458 research outputs found

    Handbook of nature-inspired and innovative computing: integrating classical models with emerging technologies

    Get PDF
    As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena

    Multi-level Explanation of Deep Reinforcement Learning-based Scheduling

    Full text link
    Dependency-aware job scheduling in the cluster is NP-hard. Recent work shows that Deep Reinforcement Learning (DRL) is capable of solving it. It is difficult for the administrator to understand the DRL-based policy even though it achieves remarkable performance gain. Therefore the complex model-based scheduler is not easy to gain trust in the system where simplicity is favored. In this paper, we give the multi-level explanation framework to interpret the policy of DRL-based scheduling. We dissect its decision-making process to job level and task level and approximate each level with interpretable models and rules, which align with operational practices. We show that the framework gives the system administrator insights into the state-of-the-art scheduler and reveals the robustness issue in regards to its behavior pattern.Comment: Accepted in the MLSys'22 Workshop on Cloud Intelligence / AIOp

    The Single Row Routing Problem Revisited: A Solution Based on Genetic Algorithms

    Get PDF
    With the advent of VLSI technology, circuits with more than one million transistors have been integrated onto a single chip. As the complexity of ICs grows, the time and money spent on designing the circuits become more important. A large, often dominant, part of the cost and time required to design an IC is consumed in the routing operation. The routing of carriers, such as in IC chips and printed circuit boards, is a classical problem in Computer Aided Design. With the complexity inherent in VLSI circuits, high performance routers are necessary. In this paper, a crucial step in the channel routing technique, the single row routing (SRR) problem, is considered. First, we discuss the relevance of SRR in the context of the general routing problem. Secondly, we show that heuristic algorithms are far from solving the general problem. Next, we introduce evolutionary computation, and, in particular, genetic algorithms (GAs) as a justifiable method in solving the SRR problem. Finally, an efficient O(nk) complexity technique based on GAs heuristic is obtained to solve the general SRR problem containing n nodes. Experimental results show that the algorithm is faster and can often generate better results than many of the leading heuristics proposed in the literature
    • …
    corecore